https://leafw-blog-pic.oss-cn-hangzhou.aliyuncs.com/avatar.jpg

如何实现参加RAG比赛但进不了复赛的总结

好久没写文章了,断更了一个多月了,刚开始一段时间主要是上班精神内耗太严重没有精力去写文了,到六月初的时候,参加了一个RAG相关的比赛,初赛本周结束,作为菜鸟的我也是理所应当的没进复赛,跟第一名差了十分多,尝试了很多办法,但的确已经到个人能力的尽头了,决定就此放弃,这也是我第一次参加跟AI相关的比赛,而且还是自己单打独斗,也不能再强求更好了,总的来说,四个字:菜就多练🐶。

读李飞飞自传:我看见的世界

前不久李飞飞教授的"我看见的世界"中译版在中国发售了,我也迫不及待买了一本,这两周断断续续的看完了。看完后的感慨颇深,想着好好写一篇文章来分享给大家。

论文解读(KAN Kolmogorov–Arnold Networks)

五一假期刚开始没两天的时候,刷到了一篇火遍国内外AI圈的论文,叫做 KAN: Kolmogorov–Arnold Networks , 尤其国内某些科技媒体铺天盖地的宣传更是让我提起了兴趣,在假期结束之前,抽个空读一下看看是怎么个事。读了之后发现,仅仅只是高数、线代和概率论这些数学知识是看不懂的,最好还需要了解一点数分方面的知识,反正我是借助了ChatGPT才能勉强看完,这里我就从一个简单的科普角度来阅读这篇文章好了,建议感兴趣的同学还是完整的阅读下这篇文章,真的是个很有意思的思路。

一文带你了解当前主流PEFT技术

随着LLaMA3的发布,大模型开源社区的战力又提升了一分,国内目前应该已经有不少大佬已经开始着手对LLaMA3进行研究或微调,对于微调技术,目前比较常见的就是Peft系列的技术,那么什么是PEFT,有哪些分类,为什么这么受大家欢迎呢?今天我们就好好聊聊这个话题。

问答AI模型训练前的必做功课:数据预处理

翻译完了UDL这本书之后放松了一个多礼拜没有更新文章了,主要最近也在学习一些微调上面的知识,平时晚上还需要跑跑代码看看视频啥的,因此也一直没太有空写文章,UDL的翻译整理成PDF的工作都没空整。(虽然实际最近也花了很长时间在打游戏(。・_・。))。又到周末了,再拖着不干点正事我也过意不去了,今天就写点关于最近学习的一些关于微调方面的东西好了,因为我也是初学者,可能会有些错误,希望有大佬可以批评指正。

复习一下时间检验奖:Word2Vec

不久前,NeurIPS 官方公布了 2023 年度的获奖论文,其中时间检验奖颁发给了10年前的论文「Distributed Representations of Words and Phrases and their Compositionality」。这篇论文可以看做是Word2Vec的第二篇论文。第一篇是「Efficient Estimation of Word Representations in Vector Space」,但是这第二篇论文提出的改进算法使得Word2Vec广泛应用起来的。我想各位AI从业者尤其是NLP领域的从业者对此已经非常熟悉了,作为一个刚入门的小白今天就简单回顾一下Word2Vec算法的知识。这篇文章因为有一些数学公式,因此排版看着回有点难受,介意的话可以点击原文去掘金看哦。